On coupon colorings of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On coupon colorings of graphs

Let G be a graph with no isolated vertices. A k-coupon coloring of G is an assignment of colors from [k] := {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of G contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists is called the coupon coloring number of G, and is denoted χc(G). In this paper, we prove that every d-regular...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

On Irregular Colorings of Graphs

For a graph G and a proper coloring c : V (G) → {1, 2, . . . , k} of the vertices of G for some positive integer k , the color code of a vertex v of G (with respect to c ) is the ordered (k + 1) -tuple code(v) = (a0, a1, . . . , ak) where a0 is the color assigned to v and for 1 ≤ i ≤ k , ai is the number of vertices adjacent to v that are colored i . The coloring c is irregular if distinct vert...

متن کامل

On multiset colorings of graphs

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χm(G) of G. For every graph G, χm(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2015

ISSN: 0166-218X

DOI: 10.1016/j.dam.2015.04.026